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ABSTRACT

Instance-based Learning algorithm (IBL) is a widely used inductive learning
method that learns simply by storing instances of the problem. A new instance is
classified by retrieving the most similar training instance(s) that is used to predict the
class of the new instance. It has proven to be successful in terms of generalization
accuracy for a wide range of real-world problem. However, to achieve good
classification accuracy IBL requires storing a large number of training instances, which

increases the classification time and memory requirements.

To avoid the excessive storage and long classification time, many instance
reduction techniques were proposed in the literature. These techniques retain the most

informative instances instead of the whole training set.

In this Thesis, the problem of instance reduction is considered as an optimization
problem, which allows us to utilize genetic algorithms. Two genetically based reduction
techniques were developed: Genetically reduced Instance-based Learning (GRIBL) and

Seeded-GRIBL. The proposed techniques were tested over 18 benchmark real-world
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datasets, and compared with the best-known reduction techniques in terms of size

reduction and classification accuracy.

The developed techniques proved to compare favorably with other instance-
based data reduction algorithms. Over eighteen real world problems Seeded-GRIBL
achieved higher classification accuracy than the best-known reduction technique (which
is DROP2) by 3.1%. This came at a slight cost of 0.6% (on average) increase in the size

of the reduced set, compared with the same technique.
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INTRODUCTION

1. Induction Learning

Computers provide the means for storing huge amounts of data in a form that allows
fast random retrieval. In addition, to provide a convenient method for recording past events,
this technology opens a new possibility; using historic data to aid in future decisions. Such
tasks are trivial; the high computational power of computers opened new research areas that
attracted much attention in the last few decades. These researches were directed to achieve

systems that can metaphor human and animal learning to give the computer systems the

ability to learn from experience.

Machine learning studies the ability of systems to improve over experience.
Machine learning is any change in the computer system that causes an improvement in its

performance (Simon, 1983).

In many fields what is really needed is to build a computer program that can learn
from experience that is usually stored as set of examples in database. Inductive learning is a
subfield of machine learning that is concerned with this issue (i.e. learning from examples).
The user presents the system with a dataset of past cases (examples), together with a feature
(target function) that it must learn how to predict. The system then uses this dataset to learn
how to classify future examples. For example, a new patient is diagnosed by presenting his

particulars to the system, which uses its knowledge base to predict the diagnosis.
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2. Eager and Lazy Learners

There are many different types of Inductive learning approaches. They can be

classified into two main categories: eager learners and lazy learners.

Eager learners, such as neural networks and decision trees, use the training
examples to generate a classifier. This classifier is later used to classify new examples.

They use the same classifier for all the unseen examples it may meet in classification time.

Eager learners produce global optimization of the target function that is used to
classify any unseen example. Therefore, they need high learning time. However, the

classification time is low.

On the other hand, lazy learners, such as Instance-based learners and Cased-based
learners, store the training examples and perform most of their work at classification time.
During training time, they simply store the training data without any further computation.
Then at classification time, they generate classifiers for each unseen example; hence, they
are suitable for applications that have complex target function that cannot be approximated
by a single classifier. In effect, lazy learners find several simple local classifiers for each

unseen example.

Lazy learners do not attempt to find approximation of a target function that can be
used in general. They are good for applications with complex target functions but can be
approximated using several local simple functions. However, they have some
disadvantages such as their need for high storage requirements, large classification time,
and that they use all the attributes of the examples in classification, which is unsuitable in

some Cases.
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Neural networks were an carly approach. They use numeric functions to weight
each connection of the network. The user presents new examples to the system, causing the
weights to alter. The final state of the output nodes determines the result. Although their
usefulness is limited due to the difficulty of determining the best topology for a given
problem, much research is still carried out in this area as it is thought that they learn in a

similar way to neurons in the human brain (Fu,1994).

Induction of decision trees is another commonly used eager learners. C4.5 is a
popular example that is often used as the benchmark for comparing new learning methods
(Quinlan, 1986). The decision trees C4.5 induces, while not often intelligible to people,
prove to be efficient classifiers. C4.5 has been used on wide variety of real datasets with
much success, demonstrating a high degree of generality. There are many other similar

rule-inducing systems, but they generate production rules instead of decision trees.

Psychologists studying the way that people use memory to perform tasks conclude
that we often recall past experiences to gunide us to solve to new problems. Instance-based
learners do this by determining which case in memory is the most similar to the new

situation (Kibler and Aha, 1987).

Instance-Based Learners (IBL) are “lazy” in the sense that they perform little work
when learning from the dataset, and do most of the work at classification time. Unlike eager
learners, IBL are incremental in the sense that they can use newly available examples
without having to re-do any work. This gives them the freedom to learn over time, and so
the set of instances in memory continues to grow. If allowed to learn indefinitely, the

database eventually becomes too large to use, either because it exceeds memory capacity,
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or because the time taken to classify new examples becomes prohibitively long. It is

therefore desirable, sometimes even necessary, to prune (reduce the size) database.

Many reduction techniques were proposed in the literature; for a comprehensive

survey see (Wilson and Martinez, 2000b).

In this thesis, we introduce two new reduction techniques. These techniques try to
retain the strength of instance-based learners but at the same time solve the problem of
storage requirement and slow classification. It employs the genetic algorithms optimization
search, borrowed from the biological survival for the fittest theory, in finding the best set of
instances in a dataset and discards the less relevant ones, maintaining a certain level of
classification accuracy. The new technique uses genetic algorithms as a “front end” to
traditional Instance-based learners in order to identify and select the best subset of

examples to be used by the learner at classification time.

The techniques are discussed and empirically tested using many benchmarked

datasets. They are also compared to other reduction techniques.

3. Structure of the Thesis

In chapter 2 of this thesis, we review the necessary background information needed
in this work. It represents the Instance-based learning technique, discusses its strength and
weaknesses, and reviews some of the reduction techniques used with Instance-based
learning. It also reports the main concepts of Genetic algorithms and its applications in

optimization problems.
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Chapter 3 introduces Genetically Reduced Instance-based learning (GRIBL), a new

reduction technique, and seeded-GRIBL, a version of GRIBL.

The experiments and results are reported in chapter 4. The conclusion and future

work are presented in chapter 3.
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INSTANCE-BASED LEARNING AND GENETIC ALGORITHMS

1. Introduction

Since the dawn of the computer age, researchers have been attempting to create
computer programs that can improve their performance through experience. This
intelligent behavior is the main goal of machine learning.

Many machine learning methods have been developed that can be categorized
into broad categories of reinforcement, deductive, and inductive learning (Mitchell,
1997).

Learning what to do and how to map situations to actions to maximize a reward
signal is called reinforcement learning. Unlike other types of learners, the learner is not
told which action to take; instead it must discover which actions yield the most reward
by trying possible actions. Reinforcement learning addresses the problem of learning
control strategies for autonomous agents (Sutton and Barto, 1998).

Deductive learning is the process of reaching a conclusion that is guaranteed to
follow« if the evidence provided is true and the reasoning used to reach the conclusion is
correct. The conclusion also must be based only on the evidence previously provided; it
cannot contain new information about the subject matter .

Inductive learning methods, such as decision trees, rule induction, and exemplar-
based learning, utilize examples of the problem, called a training set.

Though simple, exemplar-based learners proved to be competitive to more
sophisticated learning methods, such as neural networks and decision trees, in terms of
classification accuracy (Cost and Salzberg, 1993, Stanfill and Waltz, 1986, Hindi et al,

2003). These methods learn new concepts by storing past cases in such a way that new
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examples can be directly compared with them. Based on this comparison, the similarity
of cases (instances) is determined. The system then uses the most similar case(s) to
predict the class of the new example. The learning methods included under this category
differ from each other by the way they represent stored examples (i. €. representation
method), and the similarity measure they use. There are different approaches of
exemplar-based learning. Instance-based learning, (Aha et al, 1991), which uses a
distance function to measure the similarity between the new instance and those in
memory. Other approaches also exists such as case-based reasoning, memory-based
reasoning and exemplar-based generalization (Stanfill and Waltz, 1986, Wettschereck
and Dietterich, 1995),

Section 2 of this chapter provides a revision of instance-based learning. Section
3 presents a survey of some well-known instance reduction techniques. Section 4

presents the concepts of genetic algorithms and their applications.

2. Instance-Based Learning

Instance-based Learning algorithm (IBL) is a simple inductive learning
algorithm. Unlike most learning algorithms, IBL does not construct an abstract
hypothesis of the target function; instead it just stores the training examples (instances)
and bases the target function approximation for the instance on the similarity between
this instance and the stored instances (Aha et al, 1991).

The learning step simply requires storing the instances of the training set, with
no further work on the generalization of the target function that is why IBL sometimes
called lazy learners. Each instance is represented by an input vector x which consists of
several attributes, and an output class ¢. During generalization, which is postponed until

classification time, an unseen instance is classified by retrieving a set of similar training
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instances and uses them to predict the class of the new instance. Therefore, IBL forms a
local representation of the target function instead of a global one as most of machine
learning methods do.

IBL has proven to be successful in terms of generalization accuracy over a wide
area of real-world benchmark data sets. It is competitive to more sophisticated learning
techniques such as neural networks in many applications (Cost and Salzberg, 1993,
Stanfill and Waltz, 1986, Hindi et al, 2003).

One of IBL characteristics is its ability to construct a different local
approximation of the target function for each distinct unseen instance. This
characteristic makes the IBL adequate for tasks where the target function is very
complex but can be described by a collection of less complex local approximations.

Moreover, IBL can use more complex, symbolic representation of instances,

which qualifies it to be used in many real-world learning tasks (Mitchell, 1997).

2.1 The K Nearest Neighbor Algorithm

The K Nearest Neighbor Algorithm (KNN) is a simple form of the IBL, (Aha,
1992, Aha et al, 1991). In its simplest form, KNN stores all classified instances in a
training set T at the learning time. Then at classification time, it finds the K nearest
instances and let them vote for the class of the unseen instance. The predicted class is
the class with the majority of votes. The choice of K affects the predicted class as can
be seen in figure [1], which represents a 2-dimensional space of instances where (+)
represents a positive instance and {-) a negative instance. If K=1 the unseen instance,
denoted by (?), will be classified as (+), depending on its nearest neighbor class. Where

as it would be classified as (-), if K=5 since 3 of the 5 nearest neighbors holds the class

(-)-
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[Fig.1] KNN Algorithm
The figure represents a 2-dimintional space of
instances where + represents a positive
instance and — a negative instance

2.2 Distance Function

To measure the distance (similarity) between instances, KNN uses a distance
function that measures the distance between two instances depending on the values of

the different attributes.

The distance function used by the KNN was the Euclidean Distance function:

D(xy) =Y G, -y, ) (1]

awl

where x, and y, are the values of the attribute a in instances x and y respectively, and m
is the number of attributes in the instances.

The Euclidean Distance is a commonly used function, but its use is limited to
linear attributes. (i. e. attributes with numeric values that have an ordering relationship
between them).

The Value Difference Metric (VDM) is a distance function that is appropriate
for symbolic attributes such as color, shape, etc (Stanfill and Waltz, 1986),

Na,x.r: N
N, N

ax ay

(2]

C
vdm,(x,y) = Z
c=1

where:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



10

- vdm, in the distance between the values x and y of an attribute a.

- N, is the number of instances in T that have value x for attribute a.

N.x.is the number of instances in 7' that have value x for attribute  and belongs
to class c.

C is the number of the classes in the problem domain.

. gqisaconstant, usually 1 or 2.

The Heterogeneous Value Distance Metric (HVDM) is a distance function that

combines both the Euclidean Distance and the VDM (Wilson and Martinez, 1997),

HVDM(X,Y) = /i d(X,Y) [3]

vdm ,(x,y), if a is symbolic else
d(xy)=y |x-)]

am

where

if ais numeric

ax = Prmin
and @pax, Amin are the maximum and minimum values of attribute a.

There are many other extensions to the previous distance function that handles
cases like encountering a nominal value in the unseen instance that does not exist in T.

Tt also handles the missing values in the training set instances. Wilson and Martinez

(2000a) propose distance functions that handle most of such cases.

2.3 Drawbacks of Instance-Based Learning Algorithms

As any other machine-learning algorithm, despite its valuable advantages, IBL
has its drawbacks. As mentioned before IBL stores all the training set instances at
learning time, which raises the need for large memory and causes the slow of

classification process.
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Classification accuracy achieved by IBL highly depends on the number of
training instances stored at learning time. Storing too many instances can result in
reducing the classification speed, since each instance would be visited to measure its
similarity with the unseen instance, and it also can increase the memory needed.
Therefore IBL algorithms are usually faced with the problem of choosing which
instances to store to maintain a reasonable level of balance between the generalization
accuracy and memory requirement and classification time.

These problems have been addressed in the literature using different methods:
indexing techniques (Deng and Moore, 1995), and instance reduction techniques
(Wilson and Martinez, 2000b).

Many reduction techniques were used to solve this problem. These techniques
use different criteria to decide which instance to store for classification time. A survey
of different reduction techniques will be introduced in section 2.3.

Curse of dimensionality is the second obstacle that faces the IBL algorithms, as
well as many other machine learning approaches. When the number of attributes in the
input vector is high, the probability of the presence of redundant and irrelevant
attributes increases. These irrelevant attributes can mislead the classification of the
machine learning algorithms, especially IBL algorithms. In such algorithms, the
irrelevant attributes dilute the effectiveness of informative useful attributes in the
distance function, therefore a misclassification may occur. At the same time the
presence of a large number of attribﬁtes reduces the classification time.

Two techniques were used to overcome this shortcoming: feature selection
techniques (Vafaie and De Jong, 1993), and feature weighting techniques (Wettschereck

and Dietterich, 1997). In the former, the techniques used to choose the relevant features
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(attributes), and exclude other attributes. The latter techniques weigh the features

depending on their relevance to the learning task without excluding any.

3. Reduction Techniques

All machine-learning algorithms need a set of examples, negative and positive,
to learn from. IBL uses these examples as prototypes to classify unseen examples. Most
of the time, the larger the training examples the better generation accuracy achieved.

As mentioned in the previous section, large training sets require a large memory
footprint, slow the execution time, and increase the sensitivity to noise. A technique is
needed to determine how many instances to store for usage during generalization and
what portion of space it should cover in order to avoid the excessive storage, time
complexity, and maybe improve the accuracy by noise filtering.

Many reduction techniques were proposed in the literature; in this section we
review some of the most widely used techniques, for a more comprehensive survey see
(Wilson and Martinez, 2000b). Prior to that review a framework of the common aspects
needed for discussing reduction techniques is presented.

The first aspect is the representation used in the reduction algorithm to represent
the retained instances. The designer may choose to use a certain structure that represents
a cluster of instances. We have introduced such structure in (Hindi et. al. 2004), where a
prototype is used to represent a cluster of hand written digits instances with the same
class. Other types of such clusters were introduced in the literature like hyprerectangles
(Wettschereck and Dietterich, 1995), and rules (Domingos, 1996). The other common
representation is to retain a subset of the original instances by removing less informative

instances as in most of the instance reduction techniques.

603439
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that CNN find S such that “for every instance in T, the nearest neighbor in § is closer
than its nearest enemy in $”, where the enemy is the nearest instance with a different
class.

This algorithm does not guarantee a minimal subset of 7. It is also sensitive to
noise since S would always misclassify the noisy instances, hence, those instances
would be added to it with a bad effect because it would cover more portion of the input

domain.

3.1.2 Selective Nearest Neighbor Rule

In Ritter et al. (1975) the authors proposed an extension to the CNN algorithm,
which overcomes the CNN drawback by ensuring that a minimal subset § would be
found. This proposed method, named Selective Nearest Neighbor (SNN), handles the
problem in CNN by !updating the reduction condition such that “ for every instance in
T, the nearest neighbor in S is closer than its nearest enemy in T.”

This method is also sensitive to noise; it tends to maintain accuracy more than

storage in the presence of noise.

3.1.3 Reduced Nearest Neighbor Rule

The Reduced Nearest Neighbor Rule (RNN), (Gates, 1972), is a decremental
algorithm that starts with S=7 and removes any instance if doing so does not hurt the
generalization accuracy. In other wdrds, “removes any instance if its removal does not
cause any instance in T to be misclassified by the remaining instances in §”.

This method is able to remove noisy instances, thus, produces a subset of the

CNN reduced set.
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3.1.4 Edited Nearest Neighbor Rule

Wilson (1972) proposed a new decremental reduction algorithm called Edited
Nearest Neighbor Rule (ENN) that initialize S by all instances in T and “removes from
S any instance that is not classified correctly using the KNN algorithm”.

It removes noisy instances to leave smoother decision boundaries, and it does
not reduce the memory requirement as much as other reduction techniques since it
retains central points.

An extension of this algorithm is also presented that applies the ENN repeatedly

until no further reduction is possible. This extension is called Repeated ENN (RNN).

3.1.5 Encoding Length

An encoding length heuristic was used in Cameron-Jones (1995) to measure
how well S is describing T. This method consists of two phases. The first is the growing
phase where each instance in T is added to S if that reduce the cost. The following
phase is called the pruning phase in which the algorithm removes an instance if its
removal lowers the cost. This method is also called ELGROW.

Explore is a method that applies ELGROW with its two stages, and then does a

1000 mutations hoping of improving the classifier.

3.1.6 Instance-Based learning algorithm2
An Incremental algorithm called IB2, or Growth, was introduced by Aha and
Kibler (1987). This algorithm initializes S with an empty set. Then it “adds to S every

instance in T that is not classified correctly by the instances already in S”.
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3.1.7 Decremental Reduction Optimization Procedures (DROPs)

Wilson and Martinez (2000b) proposed a group of reduction techniques that
takes into consideration the order of removal. The DROPs family work on a training set
T contains n instances (X7..X»). A nearest enemy of an instance is the nearest instance
with a different class. An instance’s associate is the instance that has X in their K nearest
neighbors.

The different DROP techniques are:

¢ DROPI: This technique is nearly identical to RNN, but the accuracy is checked
in S instead of 7. The algorithm “removes instance X if at least as many of its
associates in S would be classified correctly”.
Before removing any instance, DROPI tests to see if removing X
would degrade leave-one-out cross-validation generalization accuracy. If

the results in the same level of generalization with lower storage

requirements the instance is removed.

This algorithm removes noisy instances, and instances in the center

of the clusters to leave a non-noisy border instances. However, this

algorithm is sensitive to the order in which the instances are removed;

therefore, If the associates of a noisy instance were removed, that noisy
instance would cover a large portion of the input space, and at that point

when it is tested for removal a distant associate may be misclassified so

the removal would be canceled.

+ DROP2: An extension to DROPI that handles the problem of noisy instance,

mentioned above, by testing the affect of removal on the generalization accuracy
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in T instead of S. That means it “removes instance X if at least as many of its
associates in T would be classified correctly without X,
This algorithm changes the order of removal of instances. It first
sorts the instances depending on their distance to the nearest enemy.
Then it removes those are farthest from their enemy; hence it removes
the non-border points. From this point of view the noisy instances will be
considered as border points. Therefore, if the noisy instance was in the
center of the cluster, the algorithm will consider the central instances

around it as border instances and would not be removed.

DROP3: This member of the DROPs family overcomes DROP2 noise
sensitivity by performing a noise-filtering pass. This filtering is done using a
rule similar to the ENN, where any instance that is misclassified by its k nearest
neighbors is removed. The second pass is applying DROP2. This yields

smoother decision boundaries and immunity to overfitting.

DROP4: An enhancement to DROP3 where a second condition is added to the
noise filtering condition. It request that the removal of the noisy instance would
not hurt the generalization accuracy, in order to limit the number of noisy
instances removed in the filtering to a level that affords a good generalization

accuracy.

DROPS5: An algorithm that modifies DROP2 by adding a noise reduction pass.
In that pass the instances are removed depending on the distance to their nearest

enemy from nearest to farthest. Then a typical DROP2 is applied.
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4. Evolutionary algorithms

Optimization algorithms had received special interest in the last decade because
of their ability to find approximate solution to NP-hard problems and problems where
no analytic method exists.

Optimization algorithms are usually classified into two categories. The first
category is the deterministic local search algorithms such as Steepest Descent, which
usually stuck at local optima. That happens when the optimization problem has multiple
local optima or when the search space is huge enough not to be able to define exact
local optima. The other alternative is stochastic search such as Simulated Annealing,
Tabu Search, and Evolutionary Algorithms (Louis 1993, Bick T. 1996).

Among the different stochastic algorithms known, evolutionary algorithms
propose the most promising solution for optimization problems. It can be applied to a
wide area of problems and not restricted to certain applications.

The most commonly used type of evolutionary algorithms is Genetic Algorithms
(GA) (Goldberg, 1989, Davis, 1991). GA is considered as a model of machine learning,
which derives its behavior from a metaphor of the processes of evolution in nature. This
is done by the creation within a machine of a population of individuals represented by
chromosomes. Then, individuals in the population go through a process of evolution
(comp.ai.genetics FAQ).

John Holland, from the University of Michigan, was the pioneering founder of
much work in genetic algerithms. The first achievement was the publication of
Adaptation in Natural and Artificial System in 1975 (Holland, 1975).

Genetic Algorithms inspire Darwinian survival for the fittest theory in searching
the problem domain by evolving a population of solutions until a certain level of

goodness (fitness) is achieved. Unlike most stochastic search methods, GA operates on
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population of solutions instead of a single solution. It is a very simple optimization
algorithm, yet it performs well on many different types of problems.

Typically GA maintains a population of individuals (chromosomes). Each
individual has a fitness value and consists of a number of genes, where every gene
represents a certain optimization characteristic, and together represents a solution for
the problem. After creating the population, GA iteratively evolves it to a better

population.

4.1 Basic Concepts

The population is usually initialized with randomly created chromosomes
(solutions), which represent different solutions for the optimization problem. After
initializing the population, the evolution process starts by iterating over several
generations. During each successive generation, each individual is evaluated and a value
of goodness or fitness is returned by a fitness function. Then the evolution continues
until some termination criterion is met. The termination criterion varies from
application to another; it may be a condition that a certain level of fitness is achieved or
a certain number of iterations are performed.

Inside the evolution loop three main operators are applied (Goldberg, 1989,
Miller et al., 1993, Grefenstrette et. al., 1989, Mitchell, 1996):

¢} Selection, where individuals with the better fitness are more likely to

survive to the next generation.

2) Recombination (cross over), where two parents are crossed over to

create one or two children.

3) Mutation, which alters the chromosomes to create new individuals.
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The algorithm in figure [2] shows the basic operations used in Genetic

algorithms.

Initialize population of individuals P randomly

Evaluate fitness of all individuals in P

Test for termination criterion (time, fitness, etc.)

While termination condition is not met do

1. P, < select the sub-population that will be passed to
the next generation

2.Parents «- select a sub-population to participate in
Crossover
to produce two offspring

P, o= Pyt recombination of the "genes" of selected parents
3. Mutate P, stochastically
4. P—=Pos

.[Fig-'.. 2] The basic génetic

algorithm

The basic algorithm can be modified in many ways depending on the
optimization problem, and many parameters can be tuned to obtain the desired results.
In general, if you choose the appropriate fitness function, the right representation, and
the suitable operators, then the variations in the algorithm or on the parameters will

have minor effect on the results.

4.2 Representation (Encoding)

The first decision must be taken before using Genetic algorithms is to determine
the representation scheme to encode solutions of the optimization problem.

Different techniques for encoding chromosomes were used. Some of these
techniques use high-level problem representation and implements specialized crossover

and mutation operators. Such techniques use trees, lists, objects, or any other data

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



21

structure to encode solutions. However the simplest and most frequently used
representation is the Binary representation.

Binary encoding is the traditional way to represent parameters in GA. The data
structure used is a bit-vector with length L, where L is equal to the number of

parameters and 2" is the number of possible solutions.

4.3 Population Initialization

The initialization of the population specifies the starting point of the search.
Many approaches were used to setup the population. One of the most commonly used
approaches is the random initialization using uniform distribution in order to proceed
from an unbiased sample of the search space. Another approach works by scattering the
search space into regular grid-layout and generate a chromosome that represent a square
in the grid. Furthermore, the domain knowledge can be incorporated to create
chromosomes that represent already known solutions, (Louis, 2003). Louis and Johnson
(1997), proposed a technique that seeds the initial population with solutions of similar

previously solved problems, which can reduce the time taken to find a quality solution.

4.4 Selection

Selection is an important stage in the new population evolving {Whitley, 1989).
In this stage the individual that does not serve the desired solution or have a low fitness
value is discarded. In other words, it maintains the good individuals in order to keep a
certain level of fitness. This way GA, generation after another, directs the search into

the promising areas in the solution domain.
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The selection operator picks a certain percentage of individuals and passes them
to the next generation. These individuals are usually chosen probabilistically depending
on their fitness.

The determination of the selected percentage of individuals, also called survival
rate, is an important aspect of the evolution process. A large survival rate could direct
the algorithm to converge into a small area of the solution space. On the other hand a
small survival rate slows down the convergence process.

The selection technique should be biased to good individuals, but it should also
pick some less good individuals to guarantee that the population will not quickly
converge to a local optima solution.

Different techniques are used for selection. Here we list 2 of them.,

1. Tournament Selection: This technique holds a tournament of K random
individuals and copies the one of the best fitness among these K
individuals to the next generation. The tournament length K is usually
equals to two or three and is rarely above 5. Figure [3] shows the
psuédocode for the tournament selection,

Tournament selection is the most commonly used selection
technique because it is simple, does not need long

computation time, and gives good results.

Tournament selection (P) // P is the current population 3
=0 '
While j< (length (p)* survival rate) do
{
Pick K random individuals I ,...,Ix from P;
Compare the fitness of the picked individuals;
Insert a copy of the fitter individual into Pye.; / Ppey is the evolved  Population ’
jHt

}

[Fig.3] Tournament Selection
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2. Roulette Wheel Selection: It is also called proportional selection because
individuals are given a probability of being selected that is directly
proportional to their fitness. The probability is calculated by dividing the

fitness of the individual by the total fitness of the population.

4.5 Crossover (Reproduction)

Crossover is a genetic operator that is used to add variation to chromosomes
from one generation to the next one. Actually, the evolution process without crossover
turns to a copying process that duplicates individuals without any enhancements on the
new individuals (Qi and Palmieri, 1993). It is an analogy to the biological reproduction.
The crossover process starts with two parents independently selected according to a
probability distribution that takes their fitness into consideration. It produces two new
offspring, where each offspring contains some of the genetic materials of each of its
parents. The two offspring are usually different from their two parents and from each
other. In the new generation the two offspring could be considered or only the fittest is
included and the other one is discarded.

The technique used to select the parents that will participate in the crossover is
usually the one used for selection.

There are different crossover techniques that can be used:

1. Single Point Crossover: The most common cross over technique, where
a point in the chromosome is randomly selected, and the genes beyond
that point is swapped between the two parents to produce two children,

as shown in figure [4].
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Parent 2

1011010

010100110

0011110 | 110101101

Crossover

N

Crossover point

Child 1

Child 2

1011010

110101101

0011110 { 010100110

[Fig.4] Single point crossover

2. Two Point Crossover: Two points are selected in the chromosome.

Everything between the two points is swapped between the two

parents to produce two children, as shown in figure [S).

Parent 1 Parent 2
101| 101001010] 0110 001 111011010 1101
i ..Crossover
Child 1 Child 2
101 771011010) 0110 001 101001010| /10!

[Fig.5] Two points crossover
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4.6 Mutation

Crossover is the basis of genetic algorithms; there is nevertheless, another
important operator, which is mutation. In fact, the desired solution may not be present
inside a given population, even if it is a large population. Mutations allow the
emergence of new genetic configurations, which improve the chances to find the
optimal solution (Bick, 1993).

The mutation process allows new individuals to be created. It begins by picking
an individual, depending on its fitness, and then randomly chooses a gene and changes
it. In Binary representation, this happens by choosing a random bit and flipping it, as

shown in figure [6].

Before Mutation | 010100110000011001

After Mutation | 010100110010011001

[Fig.6] Binary Mutation

4.7 Fitness Function

The evolutionary process is driven by the fitness measure used. The fitness
measure assigns each chromosome a fitness value that quantifies the optimality of a
solution in a genetic algorithm, so that a particular chromosome may be ranked against
all the other chromosomes. Relatively optimal chromosomes are allowed to breed and
mix their datasets by any of several techniques, producing a new generation that will
(hopefully) be even more optimal (Smith et. Al., 1993).

An ideal fitness function correlates closely with the algorithm's goal. Therefore
it is important to choose a suitable fitness function. In most numarical problems, the

fitness function is explicitly given by a mathmatical equation. However, in problems
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that are not well-defined, the designer of the GA should make sure that the choosen
function properly ranks the individuals so that the most desirable solution is assigned
the best fitness. Otherwise, selection operator will choose the worng individuals when

forming the next generation.

4.8 Applications of Genetic Algorithms in Machine Learning

Genetic Algorithms have been used in a wide variety of optimization tasks
(Grefenstette, 1987), including numerical optimization, and combinatorial optimization
problems such as the traveling salesman problem (TSP) (Louis, 1999), circuit design,
job shop scheduling (Goldstein, 1991), planning, induction of decision trees for
classification, and other optimization tasks related to machine learning. Additional
information and examples can be found in Koza (1992).

Moreover, Genetic algorithms were employed to improve the behavior, to
handle the drawbacks, and to solve the problems of some learning algorithms. Handling
the learning algorithms weaknesses is an optimization problem after all.

Two examples of how GA was employed in machine learning are summarized

below.

»  Using GAs in Feature Selection and Weighting

Most machine learning algorithms are sensitive to irrelevant attributes, Before
the classification process the algorithm should determine the useful subset of features
(attributes), to be used in the classification process, from a larger set of mutually

redundant, possibly irrelevant attributes.
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Yang and Honavar (1997) explore a wrapper-based multi-criteria approach for
feature subset selection using a genetic algorithm in conjunction with a relatively fast
inter pattern distance-based neural network learning algorithm.

They have represented the input pattern attributes vector with a binary string in
which each bit corresponds to an attribute. The fitness function, that controls the
generation evolving process, is determined by evaluating the neural network using
training set whose input patterns are represented using only the selected subset of
features.

They have examined the combined approach on 10 datasets, 9 real datasets and
an artificial dataset, which was used to explore the feasibility of using genetic
algorithms for the addressed problem. The generalization accuracy achieved by the
neural network constructed using the GA-selected subset of attributes was remarkably
increased compared to that achieved by the neural networks constructed using the
original set of attributes.

Wilson and Martinez (1996) address the same problem of redundant and
irrelevant attributes by using attribute weighting to lessen the influence of such
attributes. They proposed a system that combines genetic algorithms with instance-
based learning; the system is called Genetic Instance-Based Learning (GIBL).

The system uses the GA to guide the search in the weight space, and IBL to
evaluate each combination of feature weights and determine its fitness.

The GIBL system uses a rcal values vector representation for the individual's
chromosomes, where each real valued gene represents a weight for a certain attribute,
These chromosomes formulate the population, which consists of 40 individuals, and
initialized almost randomly, a vector of ones is also included as a default setting for the

attribute weights.
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At each iteration of the genetic revolution, the whole generation is replaced by
new individuals created via recombination (crossover). Two operations were used:
crossover and mutation. A percentage of 30% of the population were reproduced by the
crossover operator. The parents that will participate in the crossover operation are
selected probabilistically. The rest of the population is produced by mutating the
original individuals. The mutation percentage is set to 50%, which corresponds to the
possibility that each gene would be mutated.

The fitness value of a chromosome in GIBL system represents the classification
accuracy when using the weights in that chromosome.

The GIBL system was tested on 16 datasets using 10-fold cross validation. In
each fold the training set is used to find the chromosome with optimal attributes
weights, then those weights were used during the classification of the test set.

The results reported in the paper shows that GIBL system gave slightly higher
classification accuracy on regular data sets, and significantly higher classification

accuracy with datasets with irregular and redundant attributes.

»  Using GAs in clustering

Unsupervised classification is a type of pattern classification technique that was
frequently addressed; one example of those techniques is Clustering. In Clustering, sets
of similar patterns are grouped in a cluster. The definition of the similarity between
patterns is the main task of the clustering technique. Then the technique starts with an
initial cluster centers and searches a very complex space in order to find the best
possible cluster centers.

Many earlier versions of clustering techniques were proposed during the last

decade. One of the simplest and most frequently used is the K-mean algorithm. Maulik
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and Bandyopadhyay (2000) propose a new technique that derives the K-mean
simplicity. At the same time employs the capabilities of the GAs to search through
complex spaces, its implicit parallelism, and its ability to provide good results
irrespective of the starting configuration to avoid local optima, where K-mean may
stuck at.

The GA-clustering algorithm proposed Maulik and Bandyopadhyay used to
appropriately determine a fixed number of cluster centers. They have followed the basic
steps usually used in different GAs optimization tasks, such as using floating-point
representation of chromosomes, defining the clustering metric and using the inverse of
it as a fitness function, Roulette wheel selection, crossover, and mutation.

The experimental results presented, provided for four artificial data sets and three
real-life data sets, show in general that the GA-clustering technique performs more
uniformly than the older clustering algorithm (K-mean). Moreover it didn’t exhibit any
unwanted behavior regarding sub-optimal solutions where the K-mean may face a
problem. It was clear that the GA-clustering fitness results were usually close to the best
value in different initial popuIatioﬁs. It provided a performance that is significantly

superior to that of the K-means algorithm for the data sets considered.
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A GENETIC ALGORITHM APPROACH FOR INSTANCE REDUCTION

1. Introduction

Instance-Based Learning techniques are widely used for different
classification problems especially when the target function is hard to be represented by a
single classifier (Aha et al, 1991). Therefore, IBL proved to be competitive in terms of
classification accuracy to more complicated learning techniques such as neural networks in

many applications (Cost and Salzberg, 1993, Stanfill and Waltz, 1986, Hindi et al, 2003).

Instance-Based learners are able to learn quickly from a very small dataset. Whereas
other induction methods require reasonable number of examples before they can induce,

IBL can begin to make useful predictions from as little as one example per class.

However, in many applications, to achieve reasonable classification accuracy large
number of instances is needed, which not only increases the memory requirements but also
slows the classification process. The large number of instances stored increases the
classification time simply because every new instance needs to be compared with a large

number of instances before the nearest instance is found,

To resolve the problem of large training set stored by IBL, many instance reduction
techniques were proposed in the literature (see section 2.2 for a review of such techniques).
Instance reduction techniques reduce the number of stored instances, but unfortunately, this

usually reduces the classification accuracy.
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In this chapter, new reduction techniques are presented. These techniques,
discussed in section 2 and 3, consider the problem of dataset size as an optimization
problem, permitting the use of GAs to find a reduced sct that is informative enough to

represent the original training set.

2. Genetically Reduced Instance-Based Learning System

Genetic algorithms are used in this thesis to find a good subset of training instances
that is informative enough to represent the original training set. There are two criteria to be

optimized: the classification accuracy and the size of the reduced set.

The proposed technique, Genetically Reduced Instance-Based Learning (GRIBL),
uses genetic algorithms to search the space of all possible subsets of the original dataset.
The technique balances between the exploration of the search space, using crossover and

mutation, versus the exploitation of particular areas of the space, using selection operators.

The evolution process starts with a population of different subsets of a dataset and
continues for several generations (applying the different genetic operators) until no further
improvement can be achieved in the fitness. Fitness is measured by a certain function that

takes into consideration both the classification accuracy of the subset and its size.

At the end of the evolution process, a whole population of individuals becomes
available. Each individual is a subset of the training set that is hopefully informative

enough to represent it; hence, it represents a reduced set of the original dataset that is
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expected, hopefully, to perform as well as the original in terms of classification accuracy

but with lower number of instances.

The best individual in the population is the outcome of GRIBL, which is

passed to the IBL system to use it in classification. Figure 7 shows the data flow in GRIBL.

Random
Individuals

IBL
Classifier

T e GRIBL Reduced
Set

[Fig.7] The data flow in GRIBL

The GRIBL algorithm is shown in fig [8]

GA_Reduction (T) §
// where T is the Training Set :
1. P=InitializePopulation(k); where k is the number of individuals in

the population
2. Evaluate each individual in P using a random subset of T
loop
3. Best — find the fittest chromosome in P
4. Pnew <« Apply the tournament selection with k=3 to 20% of P
5. Pnew —Apply single point crossover to 40% pairs of the
population chosen using tounament selection
6.Prew «— Apply Bit-Flip mutation to 20% of P
7. Evaluate each individual in Pnew using T
8. P — Pnew
until (termination criterion is met)

return Best

[Fig.8] GRIBL Algorithm
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2.1 Individual Representation

Each chromosome (individual) in GRIBL population represents a candidate reduced
set of the training set. Each gene in the chromosome represents an instance in the training
set. Binary representation is used to encode the chromosomes. A chromosome is
represented by a binary string of length L, where L is the number of instances in the
training set. Each binary bit represents agene and corresponds to an instance in the original
training set. If the bit is on, (i. e. set to one), then the corresponding instance is a member of

the chromosome; otherwise, the instance is not a member.

2.2 Population Initialization

In GRIBL, initial population consists of k individuals. Each individual represents a
randomly selected set of instances. The individual is initialized with randomly generated

binary values (0,1).

To achieve a good level of diversity, the population is initialized with individuals of
different sizes. The range of the size is between 20% and 70% of the original training set
size. This produces individuals from different areas of the domain space to maximize the

portion of the space represented by the population.

To determine whether an instance is in an individual (a reduced set) or not, a

random number between 0 and 1 is generated and compared to the threshold value (that
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varies between 0.2 and 0.7). if the random number is greater then the gene value is set to 1,

otherwise to 0.

The population initialization process used in GRIBL is shown in fig [9].

InitializePopulation(k)
For each individual do
Generate a random threshold value between 0.2 and 0.7
For each instance in the training set do
{
X=a random number
If x<= threshold
Set the corresponding gene to 1
else
Set the corresponding gene to 0

[Fig.9] GRIBL population inifialization
algorithm

2.3 Evolution control

After initializing the population of chromosomes the evolution process starts by
iterating over several generations. During each generation, the fitness of each individual is
evaluated using a fitness function. Then the evolution continues until some termination
criterion is met. The termination criterion may be a condition that a certain level of fitness
is achieved, a certain number of iterations are performed, or no further improvement in the

fitness is achieved.

In GRIBL the evolution process continues as long as an improvement in the fitness
is achieved in the last generation. This is tested by comparing the best chromosome, in
terms of fitness, in the last generation with the best in the previous one. However, if no

improvement is detected in the new generation that does not necessarily mean that
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Populations in GRIBL contain the three types mentioned above. Therefore, it uses

three types of operators: Selection, Crossover, and Mutation.

¢ Selection Operator:

The selection operator is used to choose the individuals with a good fitness and
pass them to the next generation. This allows the individuals with acceptable fitness
to survive for more than one generation; hence, the good genes will not fade away.
This ensures that a minimum level of goodness will be maintained through the

evolution.

The Tournament Selection, used in GRIBL, is a technique for choosing the
surviving individuals. A tournament of 3 random individuals is held and the fittest

one is passed to the new generation (Whitley, 1989).

To avoid losing the best individual in the previous generation, it is passed

antomatically to the new generation.

¢ Crossover Operator:

The new individuals in the generations represent new areas in the search space.
The presence of these individuals supplies populations with chromosomes holding
new gene combination, which increases the possibilities of exploring new areas in

the search space and discovering new candidate solutions.
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In GRIBL we used single-point crossover operator, where a point in the
chromosome is randomly selected, and the genes beyond that point is swapped

between the two parents to produce two children (Qi and Palmieri, 1993).

The crossover rate is set to (0.8), since the selection rate is (0.2), which implies
that 80% of the produced generation are new individuals while 20% are copied by
selection. The number of crossover processes equals to half the number of children

(new individuals), since each crossover process produces two individuals.

The selection of the parents that will participate in the production of each couple
of children is an important part of the crossover process. Therefore, tournament
Selection is also used for choosing the parents. Two tournaments of 3 random
individuals each are held and the fittest one in each is considered as parent and

participates in the crossover process.

e Mautation Operator:

After the selection and crossover processes a new population full of individuals
would be available. Some of these individuals are directly copied and others are
children of the crossed over parents. In order to allow the emergence of new genetic
configurations that improves the chances to find the optimal dataset, mutation
operator is used. In some cases, when all the individuals become very similar,

mutation is the only way to explore other areas of the search space.
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The Bit-Flip mutation is the mutation operator used in GRIBL. This mutation
operator randomly selects an individual from the current generation, and flips a

random gene in that chromosome (Béck, 1993).

The number of individuals mutated in each generation depends on the mutation

rate. The rate in GRIBL is (0.2), i.e. around 20% of the population is mutated.

2.5 Fitness Function

Choosing an appropriate fitness function is a step of an extreme importance for
successful applications of GAs to any problem domain. The fitness function measures the
quality of the individuals, which affects the decision of selecting the individuals those will
be copied to the new generation, or participates in the crossover process. This step is more
difficult and important for instance reduction problem we are tackling, simply because the
fitness function must make good balance between two factors: classification accuracy and

size of the reduced set.

The fitness function used in GRIBL was adopted from a formula proposed by
Nunez (1988), which was used to balance the information gain achieved by using a specific

attribute and its cost, in building decision tree. The original formula is,

2Gam -1
(Cost +1)”
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where w is a constant between 0 and 1, which determines the relative importance of cost

versus information gain.

In GRIBL, the Information gain corresponds to the classification accuracy gained

from using an individual, and the size is the cost of using it.

2 Accuracy 1

(size _ratio +1)”
The constant w varies among the different versions of GRIBL, but in most of the

versions it is set to 0.2 since the classification accuracy is more important.

2.6 Individual Classification Accuracy

For each individual in the population during the evolution process a fitness value is

assigned. This fitness value depends on the individual classification accuracy.

The individual classification accuracy is measured by classifying a randomly
chosen group of instances from the original training set using the chromosome instances.
Each individual in the population is used to classify the randomly chosen group using KNN
algorithm, where k=3. The individual classification accuracy is the ratio of the number of

correctly classified instances to the number of the instances used in the test (the size of the

group).
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3. Seeded Genetically Reduced Instance-Based Learning System

The initial experiments showed that GRIBL takes a large number of generations

before terminating and returning the fittest reduced set, which takes alot of time.

As was mentioned in section 3.2, GA search makes a balance between the
exploration of the search space, using crossover and mutation, and the exploitation of
particular areas of the search space, using selection operators. In some cases, time and
effort is wasted to maintain this balance by exploring areas in the search space where no

optimal solutions are available.

The random population initialization may mislead the search for multiple successive
generations, where an era of generations could be wasted before an acceptable population is
presented. This may cause the GRIBL technique to iterate for a considerably large number

of generations before finding reasonably fit individuals.

Louis and Johnson (1997) proposed a technique that uses the idea of case-based
reasoning (CBR) to seed the initial population with solutions to similar previously solved
problems. They have suggested to seed the initial population with previous GA search
solutions, or use some analytical information collected in these searches to control the

current one.

Louis and Johnson idea inspired a modification that may solve the time problem of
the original GRIBL. The initial population is seeded with solutions yielded by other
reduction techniques. There are many reduction techniques used for IBL training set size

reduction, (Wilson and Martinez, 2000b), we use the reduced set returned by some of these
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techniques as solutions to initialize the population. The data flow in the suggested

technique shown in fig [10].

Reduced

/._ﬁ_’/ T,

N

NS

i ] IBL

@;";Il‘leductlon ETELN ¥ : Classifier 7,

7 Techniques : S b
Vi 1 7 A S 4

e th st s 1e e < mrmie T e ¢ i GRIBL Reduced
Set
[Fig.10] The data flow in Seeded
GRIBL

Seeding the initial population with individuals that represent reduced sets obtained
using other techniques solutions, gives the system a head start, enabling it to converge to a
good reduced set in less number of generations. It also helps the algorithm to avoid the
local optima that GRIBL may fall in simply because it consider search in areas that

probably contains the global optima or at least good local optimas that are close to the

global one.
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EMPIRICAL WORK

1. Introduction

In chapter 3, two new reduction techniques were proposed: GRIBL and Seed-
GRIBL. These techniques are used to reduce the training set size by deciding the most
informative subset that can be retained instead of the original dataset.

Both techniques, GRIBL and Seeded-GRIBL, employ genetic algorithms to
search for the best subset of instances that would act well in classifying unseen
instances; they use genetic operators to explore more area of the search space in order to
ensure that only instances with minimal effect on the general classification accuracy are
discarded.

In all experiments in the following sections 10-folds cross validation is used.
Each dataset is randomly divided into 10 separate partitions of the same size. At each
iteration, 9 different partitions (90% of the dataset instances) are considered as training
set, T, and the remaining partition is used as a test set S (10% of the dataset instances).

At each fold, GRIBL takes T as input, initializes the population depending on
the size of T. T is also used to evaluate the fitness of each individual in the population
for evolution purposes. Then when GRIBL finishes, it uses § in testing the classification
accuracy of the reduced set. The classification accuracy for the reduced set is measured
using the KNN algorithm where k= 3. The classification accuracy is found by

calculating the average accuracy of the ten folds.
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The techniques proposed were implemented using MATLAB7 development
tool. MATLAB is widely used in scientific and technical computing, development, and
programming since it provides a wide collection of supporting tools for different fields.

The datasets are partitioned and stored in text format. The partitions for each
fold are stored in one file. Different old reduction techniques were applied to these files,
and then the reduced set is stored to be used by Seeded-GRIBL.

The GRIBL and seeded-GRIBL were tested using 18 benchmark real-world
datasets. These datasets were obtained from the machine learning data repository
available from the University of California at Irvine,

http://www.ics.uci.edu/AI/ML/MLDBRepository.html.

Table 1 gives further details on each of the datasets such as the number of
attributes, the number of examples (instances), and the number of classes.

Table 2 shows the classification accuracy and percentage of reduced set size to
the original training set size of the DROPs family. These algorithms will be used next in
the statistical test of the proposed techniques. The last two columns show the best

reduction technique in terms in accuracy, and size reduction
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Table 1. Datasets used in experiments

Number of | - ‘Number of

DataSet ihstances. | attributes Classes
Breast-cancer-wisconsin 699 9 2
Bridges 106 11 7
Echocardiogram 74 9 2
Flag 194 28 8
Glass 214 9 7
Heart 270 13 2
Heart.Long-beach-va.2 200 13 5
Heart.cleveland.2 303 13 2
Heart.hungarian.2 294 13 2
Heart.swiss.2 123 13 5
Hepatitis 155 19 2
Horse-colic 301 23 2
Iris 150 4 3
Liver.bupa 345 2
Pima-indians-diabetes 7638 8 2
Promoters 106 57 2
Wine 178 13 3
Zoo 90 16 7

In section 2, we discuss the details of GRIBL technique, report the experiments,
and discuss the results. In section 3 two versions of Seeded-GRIBL are represented with

the experiments and results for both.
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2. Experimenting with GRIBL

The GRIBL technique, as discussed in the previous chapter, employs genetic
algorithm concepts to optimize the size of training set and classification accuracy
combination in IBL.

It starts by initializing a population of size 10 random individuals. Each
individual corresponds to a reduced set. The number of 1’s in the individual indicates
the number of instances in the suggested reduced set. To ensure a diverse population,
individuals were initialized to represent reduced sets with different sizes. This was done
by changing the threshold used by the algorithm to decide whether to include or exclude
an instance. Different individuals vary in size between 20- 70% of the original dataset
size.

After initializing the population, each individual is evaluated using the fitness
function discussed in section 3.2.5. The individual accuracy is measured by applying
KNN algorithm, with k=3, on 20% randomly chosen instances of the original training
set using the individual instances. Testing over this random subset aims to improve the
efficiency of evolution process. Increasing the size of the sample may improve the
obtained results but that would increase evolution time.

During each generation, the GA operators are applied. Tournament selection,
with a tournament of size 3, is used to choose 20% of the current generation that is
copied to the next one, making sure that the best individual is one of the passed
individuals. The remaining 80% of the new generation are produced by single-point
crossover, which recombines two good parents, selected with the same selection
operator, to produce 2 new individuals. Bit-flip mutation is then applied to 20% of the

new generation individuals.
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Once a new generation is formulated, the individual with the best fitness in that
generation is found. Then it is compared to every “best individual” obtained in the last
10 generations, if it is not better than anyone of them the evolution process is
terminated. Then, when GRIBL exits the evolution loop, it returns the individual with
best fitness as the reduced set.

Table 3 shows the classification accuracy and the size of the reduced set
achieved by applying GRIBL and the 5 DROP techniques over the 18 datasets. Recall
that we are using 10-fold cross validation, so the classification and size figures in the
table represent the average obtained in the 10 experiments. The table also shows the
average accuracy, average size, technique that achieved the best accuracy, and the

technique that achieved the best size reduction for each dataset.

Compared with the best-known reduction techniques, GRIBL achieved a higher
average accuracy by 0.6%. However, the cost of that improvement was an increase in
the size of the reduced set by 29.9% (on average).

A statistical significance test with 95% confidence level was applied to results.
The test compares the significance of GRIBL classification accuracy with the best
DROP technique (which is DROP2). The test showed that GRIBL’s classification
accuracy was statically significant for 11 datasets (marked in table 3 with a +), and not
statically significant for 5 datasets (marked in table 3 by a -).

Several factors might have contributed to this result:

1. We used a small number of individuals in the initial population (i. e. 10
individuals). A larger number of individuals is expected to improve the

results.
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2. The termination condition takes into account the last 10 generations only.
If no improvement is achieved during these generations the evolution
stops. Increasing the number of generations taken into consideration
could improve the results.

3. The fitness of each individual is evaluated using a small subset of the
training set (20%), which might not accurately reflect the fitness of an
individual. Increasing the size of subset may, therefore, improve the
results.

However, these changes may require considerably more evolution time.

3. The Seeded-GRIBL Algorithm

In order to solve GRIBL’s time problem, we thought about initializing the
population with quality individuals hoping that this will give the system ahead start,
enabling it to converge to a good reduced set in less number of generations.

Instead of starting with a random population, Seeded-GRIBL makes use of the
previous solutions obtained by other reduction techniques. It initializes the population
with individuals that represent the reduced set found by 10 other techniques. The
reduction techniques we considered were the 5 DROP techniques, ENN, RENN,
EXPOLRE, ELGROW, and AllKnn.

The chosen reduction techniques guarantee a diverse population with
individuals produced by different categories of reduction techniques, covering a large
area from the solution space. DROPs provide competitive reduced sets in terms of size
and classification accuracy, which expected to be the nucleus for good solutions. ENN
and RENN offers reduced sets with good classification accuracy but with large size.

This is because these techniques are good as noise elimination techniques. On the other
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hand, EXPOLRE and ELGROW reduced sets are very small but with bad classification

accuracy. While AllKnn provides a reduced set which is fair in both terms.

3.1 Seeded-GRIBL with Seeds From Ten Reduction Techniques

Starting with a good initial population, this technique is expected to outperform
GRIBL technique with respect to: size of the reduced set, classification accuracy of it,
and number of generations passed before finding the best reduced set (i. €. the evolution
time).

Providing population with quality individuals from the beginning will save
much of the generations wasted before arriving to such stage. It considers a search in
areas that probably contains the global optima; hence, it helps the algorithm to avoid the
local optima GRIBL may fall in causing a termination with solution that has a lower
quality.

Therefore, Seeded-GRIBL is expected to be competitive to other reduction
techniques in terms of classification accuracy and size of the reduced set.

Table 4 shows the classification accuracy and the size of reduced set obtained by
Seeded-GRIBL, the 10 reduction techniques used to initialize Seeded-GRIBL
population. The table shows that the classification accuracy obtained by Seeded-GRIBL
for 17 datasets was better than the average classification accuracy obtained by the 10
techniques. Moreover, the size of the reduced set obtained by Seeded-GRIBL was better

than the size of the reduced set obtained by the 10 techniques for 15 datasets.
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The results of comparing Seeded-GRIBL with the 5 DROP techniques are
shown in table 5. The figures in the table show that the average accuracy achieved by
Seeded-GRIBL is higher than the best-known reduction techniques (which is DROP2)
by 3.1%, at a cost of 2.8% (on average) increase in the size of the reduced set, compared

with the same technique.

A statistical significance test with 95% confidence level was applied to the
results. The test compares the significance of Seeded-GRIBL classification accuracy
with DROP2. The test showed that Seeded-GRIBL’s classification accuracy was
statically significant for 14 datasets (marked in table 5 with a +), and not statically

significant for 1 datasets (marked in table 5 by a -).
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3.2 DROPs Seeded-GRIBL

DROPs Seeded-GRIBL is an extension of Seeded-GRIBL in which the initial
population is seeded (initialized) with individuals representing the reduced set obtained
by the DROP techniques only.

The intuition is that since the DROP family of techniques provides solutions
with good combination of classification accuracy and amount of reduction. Perhapse
seeding GRIBL with such solutions would allow it to improve on them.

The experiments performed, reported in table 7, showed that DROPs Seeded-
GRIBL outperforms Seeded-GRIBL in with respect to the size of the reduced set for 12
datasets. The average size of reduced set obtained by DROPs Seeded-GRIBL is better

than Seeded-GRIBL s by 2.3%.

Table 7. The classification accuracy, size of reduced set, and number of
generations of DROPs Seeded-GRIBL and Seeded-GRIBL

DROPs Seeded-
DataSet KNN GRIBL Seeded-GRIBL
size% Acc size% Acc size% Acc
reast-cancer-wisconsin 100 | 0961 | 2.146 | 0.967 | 2.257 0.970
[Bridges 100 | 0642 | 21.698 | 0.631 | 24214 | 0631
[Echocardiogram 100 | 0988 | 9309 | 0932 | 9309 | 0932
[Flag 100 | 0722 | 24112 | 0701 | 37457 | 0722
IGlass 100 | 0694 | 21894 | 0.642 | 33443 | 0641
Heart 100 | 0.811 | 12.770 | 0.856 | 17.160 | 0.844
Heart.Long-beach-va.2 100 | 0.770 | 7.000 { 0.745 | 5.389 0.750
Heart.cleveland.2 100 | 0789 ) 13531 | 0.822 | 14411 | 0.815
Heart.hungarian.2 100 0.813 ] 11.943 | 0.843 | 11.300 | 0.829
Heart.swiss.2 100 | 0937 | 0903 | 0937 | 0,503 | 0.937
Hepatitis 100 | 0.799 | 7.599 | 0.813 | 8.674 0.812
[Horse-colic 100 0.604 | 11.443 | 0.751 | 13.437 0.777
1ris 100 | 0960 | 9.259 | 0.960 | 10.000 | 0.947
Livér.bupa 100 | 0643 127440 | 0643 | 24734 | 0632
[Pima-indians-diabetes 100 | 0.694 | 16189 | 0.745 | 22.758 | 0.746
iPromoters 100 | 0943 | 8805 | 0.941 | 8910 | 0941
Wine 100 | 6719 | 8302 [ 0955 | 8.302 | 0955
700 100 | 0.944 | 14938 | 0911 | 17.531 | 0922
Average 100 | 0.802 | 12.682 | 0822 | 15011 ] 0822
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The results in table 8 show that over the 18 datasets DROPs Seeded-GRIBL
achieved higher classification accuracy than the best-known reduction technique
(which is DROP2) by 3.1%. This came at a slight cost of 0.6% (on average) increase

in the size of the reduced set, compared with the same technique.

The table also shows that DROPs Seeded-GRIBL achieved significantly higher
classification accuracy than the accuracy achieved by DROP2 for 15 datasets, and

significantly lower accuracy for 1 datasets.
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4. The Effect of Evolution Parameters:

The empirical work showed in the pervious two sections assumed certain
values for the different parameters for the evolution process. In this section, we
introduce some experiments that are held using different parameter values in order to

justify the choice, we made in the original experiments.

4.1 The Effect of Population Size

The original experiments of GRIBL, shown in section 4.2, assumed a
population of 10 individuals. Increasing the number of individuals is expected to
increase the diversity of the solutions considered (i. e. increases the area covered in
the search space). Table 9 shows the classification accuracy and the size percentage of

the reduced set for GRIBL using a population of fifty individuals.

Table 9. The classification accuracy, size of reduced set, and number of generations of
GRIBL using 10 and 50 individuals in the population,

KNN GRIBL with 10 GRIBL with 50

DataSet
size% Acc size%o Acc gen size% Acc gen
reast-cancer-wisconsin 100 0.961 33.62 0.967 15.0 2364 | 0.867 389
[Bridges 100 | 0ess | 5723 | o612 | 164 | 4591 | 0661 | 331
[Echocardiogram 100 | 0920 | 2117 | 093z | 200 | 1502 | 0.932 | 672
[F1ag 100 | 0707 { 5195 | 0676 | 199 | 51.20 | 0676 | 287
[Glass 10 | 0690 | 4964 | 0630 | 156 | 54.84 | 0651 | 323
[Heart 10 | o84t | 3737 | 0837 | 161 | 4391 | 0.822 | 325
[Heart.Long-beach-va.2 10 | 0710 | 4300 | 0715 | 154 | 3578 | 0.740 | 271
[Heart.cleveland.2 100 | 0.809 | 5094 | 0815 | 162 | 4540 | 0825 | 33.0
[Heart hungarian.2 10 | 0775 | 4796 | 0768 | 176 | 3454 | 0785 | 254
eart.swiss.2 10 | 0937 | 3550 | 0937 | 183 | 875 | 0937 | 783
Hepatitis® 100 | 0787 | 3885 | 0820 | 177 | 33.26 | 0.840 | 354
[Horse-colic 100 0.731 48.06 0.694 16.3 4850 | 0.714 336
Iris - 100 | 0953 | 2785 | 0953 | 268 | 11.11 | 0973 | 824
Liver.bupa 100 | 0617 | 6242 | 0569 | 182 | 6533 | 0.594 | 305
Pima-indians-diabetes 100 0.720 51.04 0727 134 4536 0.639 236
[Promoters 100 | 0943 | 2631 | osss | 375 | 881 | 0537 | 622
Wine 10 | 0961 | 3084 | 0961 | 349 | 1347 | 0515 | 85.1
700 100 | 0944 | 4309 | 0844 | 332 | 2395 | 0.878 | 455
Average w0 | 0816 | 4205 | 0797 | 210 | 3353 | 0760 | 442
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The experiment results show that GRIBL with 50 individuals in the population
achieved lower average classification accuracy by 3.6%. However, it also achieved
better average size reduction by 8.52%. This improvement in reduction came at the
cost of the time consumed by the evolution process before converging to a fit
population, where an increase of 23 generations was noticed when using the 50
individual population. This implies that the use of larger population may result in
finding better solutions since the technique will search more areas in the search space,

however, it may be time consuming for a certain extent.

4.2 The Effect of Changine Number of Generations Considered by Termination

Criterion

As mentioned in section 3.2.3, in order to reduce the likelihood that GRIBL
would fall in local optima, GRIBL terminates when there is no improvement in fitness

for a number of successive generations.

In the original experiments, GRIBL terminates when no improvement is
achieved in 10 successive generations. Table 10 shows the results obtained using 5,
10, and 15 generations. The results show that increasing the number of generations
gives smaller reduced sets and relatively better classification accuracy, but it also

increases the evolution time as the number of generation increases.
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Table 10. The classification accuracy, size of reduced set, and number of generations of GRIBL
using 5, 10, and 15 as sizes of the record on termination criterion.

DataSet KN GRIBL with 5 GRIBL with 10 GRIBL with 15
size% | Acc | size% | Acc | gen | size% | Acc | gen |size% | Acc | Gen
reast-cancer-wisconsin 100 0961|3371 {0718 | 76 | 33.62|0.967 [ 15.0 | 33.62 | 0.967 | 215

IBridges 100 |0688) 5734 | 0612 { 108 | 57.23 | 0.612 | 16.4 | 5671 | 0612 ] 26.]
IEchocardiogram 100 |0.920] 2538 | 0750 | 11.2 | 21.17 | 0.932 | 29.0 | 1502 | 0932 | 67.2
IF;ag 100 ]0.707 | 5241 [ 0676 | 10.1 | 51.95 | 0.676 | 19.9 | 51.72 { 0.676 | 30.1
ﬁass 100 |0.690] 49.86 | 0.636 | 85 | 49.64 | 0.630 | 15.6 | 49.59 | 0.631 | 274
IHeart” o 100 |0841 ] 3745 | 0837 | 92 |37.3710.837 | 161 | 37.33 | 0.830 ] 273
IHeart.Long—'beach-va.Z 100 {0.710] 4300 | 0715 | 92 | 43.00 ) 0.715| 154 | 4294 | 0710 | 22.8
IHeart.cleveland.Z 100 [0.809| 4631 | 0577 | 9.8 | 50.94 | 0.815 | 16.2 { 50.90 | 0.812 | 223
lHeart.hungarian.Z 100 |0.775] 4928 | 0.681 | 104 | 47.96 | 0.768 | 17.6 | 48.07 | 0.768 | 26.1
ll{eart.swiss.z 100 [0937] 3360 | 0937 | 174 | 3559 | 0.937 | 18.3 | 29.18 | 0.937 | 616
IHepatitis 100 [0.787] 3900 | 0820 | 93 | 238.85|0.820 | 17.7 | 38.85 | 0.820 ) 227
IHorse-colic 100 10731 ] 4707 | 0671 | 75 | 48.06 | 0.694 | 16.3 | 48.06 | 0.694 | 24.0
[lris 100 |0953| 2956 { 0953 | 9.4 | 27.85 | 0.953 | 26.8 | 24.30 | 0.573 | 589
iver.bupa 100 |0617] 6251 | 0566 | 7.8 | 62.42 | 0.569 { 18.2 | 6242 | 0.569 | 263
Pima-indians-diabetes 100 0720} 5074 [ 0629 | 83 | 51.04 | 0.727 | 13.4 | 51.04 | 0727 | 184
Promoters 100 |0.943] 3229 | 0574 | 119 | 26.31 | 0.885 | 37.5 | 23.58 | 0.856 | 61.5
Wine 100 | 0961 3271 | 0.961 | 146 | 30.84 | 0.961 | 34.9 | 2640 | 0.950 | 85.8
7 o0 100 0944 | 47.78 | 0856 | 103 | 43.09 | 0.844 | 33.2 | 4037 | 0.822 | 514
Average 100 |0.816] 4278 | 0.732 | 102 | 4205 | 0.797 | 21.0 | 40.56 [ 0.794 | 379

4.3 The Effect of the Size Weight Used in Fitness Function

In GRIBL the following fitness function was used:

2 Acenracy 1

(size _ratio +1)"

The constant w determines the relative importance of the size of the reduced
set compared to the classification accuracy achieved by this set. Hence higher values

of w gives more weight for the size.

Table 11 shows the results of using two different values for w: 0.2 and 0.5. As

expected, a higher value for w caused GRIBL to search through solution areas with
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smaller reduced set paying less attention to the classification accuracy achieved by

that set.

Table 11. The classification accuracy, size of reduced set, and number of generations of
GRIBL using 0.2 and 0.5 as a weight for the size in the fitness fuction

KNN GRIBL with w=0.2 GRIBL with w=0.5
DataSet

size% Acc size% Ace gen sizetn Acc gen

Breast-canicer-wisconsin 100 | 0961 | 3362 | 0967 | 150 | 30.85 | 0.863 | 18.8
Bridges i 100 0688 | 5723 | 0612 16.4 4434 | 0610 | 1986
|Echocardiogram 100 0.920 21.17 | o932 260 20.57 | 0.750 | 304
[Flag ' 10 | 0707 | s195 | o676 | 159 | 41.81 | 0.360 | 21.3
h]ass 100 0.690 4964 | 0630 15.6 4007 | 0436 | 211
[Heart 100 0.841 3737 | 0837 16.1 30.86 | 0.689 18.4
[Heart.Long-beach-va.2 100 | 0710 | 4300 | 0715 | 154 | 4011 | 0715 { 239
Heart.cleveland.2 100 0809 | s094 | 0315 162 33,75 | 0.580 | 209
[Heart. hungarian.2 100 0.775 47.96 0.768 17.6 37.04 0.554 171
Heart.swiss.2 10 | 0937 | 3550 | 0937 | 183 | 31.35 | 0937 | 358
[Hepatitis 100 0.787 38 85 0.820 17.7 32.33 0.799 222
[Horse-colic 100 | 0731 | 4306 | 0694 | 163 | 4577 | 0668 | 154
ris 100 0.953 2785 | 0953 26.8 2543 | 0.660 | 464
Liver.bupa 100 | 0617 | 6242 | 0569 | 182 | 47.18 | 0603 | 17.2
Pima-indians-diabetes 100 0.720 51.04 | 0727 13.4 37.47 | 0675 19.4
Promoters ER 100 0943 | 2631 | 0885 375 29.25 | 0.584 | 266
Wine ) 100 0.961 3084 | 0951 349 2765 | 0.624 6.2
Z.00 : S 100 0944 | s309 | 0844 132 3469 | 0422 | 350
Average 100 0816 | 4205 | 0797 | 210 3537 | 0640 | 248
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CONCLUSION AND FUTURE WORK

1. Conclusion

Instance-based Learning algorithm is a simple inductive learning method. The
learning step simply requires storing the instances of the training set, with no further
work on the generalization of the target function. An unseen instance is classified by
retrieving a set of the most similar training instances. This set is used to predict the class
of the new instance. In effect, IBL forms a local representation of the target function
instead of a global one as eager learners do, which makes it suitable for problems with
complex target function that are better described by several less complex local
approximations. Moreover, IBL can use more complex, symbolic representation of
instances, which qualifies it to be used in many real-world learning tasks (Mitchell,
1997).

IBL has proven to be successful, in terms of classification accuracy, over a wide
area of real-world benchmark data sets. It is competitive to more sophisticated learning
techniques such as neural networks in many applications (Cost and Salzberg, 1993,
Stanfill and Waltz, 1986, Hindi et al, 2003).

However, Classification accuracy achieved by IBL highly depends on the
number of training instances stored at learning time. Storing too many instances can

reduce the classification speed and increase memory requirements.

To remedy these problems of the large training set stored by IBL, different
reduction techniques were proposed in the literature (see section 2.2 for a revision of

such techniques) (Wilson and Martinez, 2000b).
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In this work, we presented the instance reduction as an optimization problem
and utilized the genetic algorithms to address it. We used genetic algorithms to search
the space of possible reduced sets in order to find a good reduced set with respect to
both size and classification accuracy.

Two genetically-based techniques were developed. The first is called
Genetically Reduced Instance-Based Learning (GRIBL), in which an evolution process
iterates starting with a randomly initialized population. This process continues for
successive generations by applying different genetic operators until a fit reduced set is
obtained. Fitness is measured by a function that takes into consideration both the
classification accuracy of the subset and its size (see section for more details 3.2.5).

The second technique, named Seeded-GRIBL, initializes the population with
solutions obtained by other reduction techniques such as the 5 DROP algorithms, ENN,
RENN, ExPOLRE, ELGROW, and AllKnn. Initializing the population with quality
individuals gives the system ahead start, enabling it to converge to a good reduced set in
fewer of generations. It also helps the algorithm to avoid the local optima that GRIBL
may fall in simply because it considers search areas that probably contains the global

optima.

The proposed techniques were tested over 18 bench-mark real-world datasets,
and compared with the best reduction techniques with respect to the reduction in size
and classification accuracy.

Experiments show that GRIBL achieved an average accuracy higher than the
best reduction technique (which is DROP2) by 0.6%. However, that improvement was
at the cost of the reduced set size, which is higher than the average reduced size of the

same technique by 29.9%.
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Furthermore, a statistical significance test with 95% confidence level was
applied to the results. The test compares the significance of GRIBL classification
accuracy with the best DROP technique. The results showed that GRIBL was
significantly higher than the best DROP (which is DROP2) for 11 datasets with 95%

confidence level, and lower for 5 datasets.

Experiments with Seeded-GRIBL show that its classification accuracy was
better than the average classification accuracy achieved by 10 other reduction
techniques for 17 datasets (out of the 18 datasets), and the size of the reduced set was
better than the average in 15 datasets. It achieved the best average accuracy among the
different reduction techniques. Moreover, Seeded-GRIBL was significantly higher than

the best DROP technique for 14 datasets with 95% confidence level.

In other set of experiments to reduce the size of the reduced set, Seeded-GRIBL
was initialized with solutions obtained from the 5 DROP techniques. The intuition is
that we provide Seeded-GRIBL with solutions that are good in both classification
accuracy and size of reduced set. Experiments show that Seeded-GRIBL achieved an
average accuracy higher than the best-known reduction techniques (which is DROP2)
by 3.1%. This came at a cost of 2.8% (on average) increase in the size of the reduced
set, compared with the same technique. Moreover, classification accuracies obtained by
DROPs Seeded-GRIBL were better than those obtained by the best DROP technique
(which is DROP2) for 15 datasets with 95% confidence.

The GRIBL techniques in general and DROPs Seeded-GRIBL in particular,
proved to compare favorably with other instance-based data reduction algorithms. Over
eighteen real world problems, DROPs Seeded-GRIBL achieved the highest average

generalization accuracy, and comparable percentage in size of the reduced set.
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2. Future Work

Genetic algorithms have a large number of operators and parameters. In this
work, we have covered a small portion of the available options. GRIBL and Seeded-
GRIBL used evolution operators such as: tournament selection and single-point
crossover, and bit-flip mutation. They, also, assume certain values for some parameters.
Other operators and parameter values may give better results.

As future work, we intend to look for other ways to initialize the population, for
example, several solutions of a good reduction technique, such as DROP2 might be
used to initialize the population. These solutions can be obtained by applying such a
reduction technique on a randomly generated sample of the original training set.
Bagging and Boosting techniques for building ensemble of classifiers might provide

good initial solutions (Dietterich, 1997).
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